Laserphysik auf den Kopf gestellt

Teilen

Forscher der Technischen Universität Darmstadt haben einen neuen Weg gefunden, mittels Quantenpunktlasern maßgeschneiderte Wellenlängen zu erzeugen und darüber hinaus leichter zwischen zwei Wellenlängen hin- und herzuschalten. Mögliche Anwendungen ergeben sich in der Biomedizin und der Nanochirurgie.

Darmstädter Physiker haben einen Effekt gefunden, der die Grundlagen der Halbleiterphysik quasi „auf den Kopf“ stellt: Üblicherweise beginnt die Lasertätigkeit bei Halbleiterlasern auf dem energetisch niedrigsten Zustand; erst mit wachsendem Pumpstrom setzt auch die Emission von höherenergetischen, d.h. kurzwelligen Photonen ein. Forscher der Arbeitsgruppe Halbleiteroptik des Instituts für Angewandte Physik der TU Darmstadt um Prof. Dr. Wolfgang Elsäßer haben nun die Möglichkeit entdeckt, dass Quantenpunktlaser zunächst kurzwellige Photonen emittieren. „Diese von uns erstmals gefundene umgekehrte Zustandshierarchie erlaubt es, ‚quasi auf Bestellung’ maßgeschneiderte Wellenlängen in einem für viele Anwendungen interessanten Wellenlängenbereich zu erzeugen. Darüber hinaus erlaubt die Methode, nicht nur einfacher zwischen zwei Wellenlängen hin- und herzuschalten, sondern auch gezielt Effekte des Lasersystems zur Verbesserung von Pulseigenschaften auszunutzen“, erläutert Elsäßer.

Diesen neuen Effekt entdeckte Dr. Stefan Breuer im Rahmen seiner Doktorarbeit innerhalb des EU-Projekts „FAST-DOT (Kompakte, ultraschnelle auf neuartigen Quantenpunktstrukturen basierte Laserquellen)“. Dieses Forschungsprojekt, an dem 18 Universitäts- bzw. Forschungslaboratorien und Industriepartner beteiligt sind, zielt darauf ab, kleinere und günstigere Laser zu entwickeln, die in der Biomedizin eingesetzt werden können. Die Darmstädter haben in diesem Verbund die Aufgabe, Quantenpunkt-Halbleiterlaser experimentell zu untersuchen, sodass in Zusammenarbeit mit den anderen Forschern sowie Laserherstellern optimierte Lasereigenschaften erzielt oder sogar gänzlich neue Laserstrukturen realisiert werden. Die EU unterstützt das seit 2008 laufende Projekt bis 2012 mit 10 Millionen Euro. Im nächsten Schritt wollen die Forscher des Projekts „FAST-DOT“ nun die Einsatzmöglichkeiten des leichteren Wechsels zwischen Wellenlängen prüfen, dessen Grundlage die Darmstädter gefunden haben.

Nanostrukturierte Quantenpunktlaser in der Medizin

„Die Bedingungen für den Einsatz von Lasern in der Nanochirurgie waren bislang nicht optimal“, erläutert Elsäßer. „Ein Problem war die aufwändige Realisierung mit riesigen Lasern, die quadratmetergroße Lasertische erforderten und durch unzulängliche Energieeffizienz hohe Energiekosten verursachten.“ Anders ist dies bei der jüngsten Generation der extrem effizienten Quantenpunktlasern, die aus nanostrukturierten Halbleitermaterialien hergestellt werden. Die winzigen pyramidenförmigen Gebilde, die sogenannten Dots, haben eine Größe von Millionstel Millimetern. „Diese Winzigkeit der Strukturen hat Einfluss auf das durch sie emittierte Licht, denn Nanostrukturen von exakt definierter Größe ermöglichen die Emission von Licht genau definierter Wellenlänge. Verändert man die Größe und Umgebung der Dots, verändert sich auch die Wellenlänge und damit die Farbe des Lichts. Damit können Quantenpunktlaser hergestellt werden, die Laserlicht mit genau definierter Wellenlänge für sehr spezifische Anwendungen emittieren“, erläutert Elsäßer.

In der Mikroskopie ermöglichen Quantenpunktlaser das Durchleuchten einer Zelle. Dabei werden nicht nur einzelne Zellstrukturen für das menschliche Auge sichtbar, diese Strukturen sind auch mit hoher Tiefenschärfe zu erkennen. Eine weitere Anwendung ist ein bildgebendes 3D-Verfahren, die sogenannte optische Kohärenz-Tomographie. Hiermit werden mittels höchstempfindlicher Messungen von Reflektionen Schichtbilder mit enormer Orts- und Tiefenauflösung gewonnen, was eine nichtinvasive Frühdiagnose ermöglicht. Augenärzte können so mit Hilfe eines Quantenpunktlasers die Netzhaut in ihrer gesamten Tiefe abtasten, ohne einen Eingriff vornehmen zu müssen. Auch können Hautschichten in ihrer gesamten Ausdehnung analysiert und auf Hautkrebs untersucht werden.

Bei Quantenpunktlasern mit höheren Pulsfrequenzen reicht die Energie aus, um die Zelle zu verändern, also zum Beispiel präzise Schnitte mit minimaler Beeinflussung der zellulären Umgebung durchzuführen. „Sie können als hochpräzise Skalpelle eingesetzt werden, mit denen einzelne Zellstrukturen kontrolliert durchtrennt werden können“, umreißt Elsäßer. Außerdem können bestimmte Zellorganellen ausgeschaltet oder einzelne Moleküle – zelleigene oder zellfremde – aktiviert werden. Das eröffnet ungeahnte Möglichkeiten in der Molekülchirurgie, mit der Schnitte durchgeführt werden können, die zweitausend Mal feiner sind als ein Haar. Damit könnten künftig Krebszellen ohne nennenswerte Nebenwirkungen zerstört oder auch Hornhautkorrekturen am Auge durchgeführt werden.

Quelle: TU Darmstadt


Teilen